Year 5 \& 6 Fractions Evening

Exploring fractions with chocolate!

How this kind of activity can aid an understanding of fractions

Children's difficulties with fractions

Knowledge of fractions and division can predict a child's success in mathematics in later stages of their schooling. (Siegler et al. 2012)

Why children don't like or understand fractions

- Lack of Conceptual Understanding
- Not viewing fractions as numbers at all but as meaningless symbols
- Focusing on numerators and denominators as separate numbers rather than thinking of the fraction as a single number. This ignores the essential relationship between each fraction's numerator and its denominator.
- Confusing properties of fractions with those of whole numbers.
(There is no whole number between $5 \& 6$ so there is no number of any type between 5/7 \& 6/7)

Pupils need to experience multiple forms of fractions to have a comprehensive conceptual understanding.

The importance of making explicit links between fractions in different contexts.

What is a fraction?

- 1. fractions as part of a whole
- 2. fractions as measures (mass, capacity, time)
- 3. fractions as a number (comparing it to 1, placing on a number line, ordering fractions)
- 4. fractions as ratios (three quarters of the class are girls)
- 5. fractions as operators ('3/4 of' can be thought of as the process of multiplying by $3 \&$ then dividing by 4 or dividing by 4 then multiplying by 3)

Prior Learning

- KS1

Recognise key fractions- $1 / 4,1 / 3,1 / 2,3 / 4$
Calculate fractions of amounts
Count up in fractions

- Years $3 \& 4$

Adding \& subtracting fractions with the same denominator
Ordering unit fractions
Fractions as numbers
Equivalent fractions
Decimal equivalence

Year 5 \& 6 Objectives

- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}$ $=\frac{6}{5}=1 \frac{1}{5}$]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions > 1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$]
- divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$]
- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, $\frac{3}{8}$]

Resources to aid understanding

- The CPA approach
- How can tell which fraction is bigger?
- How can we add fractions with a common denominator?

Misconception 1: When adding (or subtracting) fractions pupils add (or subtract) both the numerators and the denominators.
e.g. $\frac{5}{7}+\frac{1}{7}=\frac{6}{14}$ or $\frac{5}{7}-\frac{1}{7}=\frac{4}{0}$

Pupils do not recognise that the denominator indicates the number of 'parts' of the same whole and therefore treat the two fractions as 4 'whole numbers' to be added together.

Before performing addition and subtraction of fractions, pupils should experience describing part/ whole relationships verbally and in written form, in the same way that they would describe whole number trios.

e.g. The yellow and purple shaded parts in the shape below represent $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$ or 1 ; or the yellow parts are represented by 1 $-\frac{3}{5}$;

or the yellow and purple shaded parts in the shape below represent $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$

Comparing, adding $\&$ subtracting with a common denominator

- Understanding of times tables \& multiples

Multiplying fractions

- A simple method
- x or 'of'
- Array to represent the problem

My array has 12 parts.
6 of these are cross-hatched $\frac{6}{12}=\frac{1}{2}$

Dividing fractions

- Sharing the given value
- $2 / 3 \div 2$
- $2 / 3 \div 4$
- The famous chicken restaurant

Reasoning $\mathbb{\&}$ problem solving activities

Odd one out

Challenge: think of a reason for each shape.

What fraction of the square is blue?
The red spot is in the middle of the square.

Different Ways

Ways to calculate $\frac{3}{4}+\frac{5}{8}$

$$
\text { Split } \frac{5}{8} \text { into } \frac{\square}{8} \text { and } \frac{\square}{8}
$$

My sister ate $1 / 4$ of my chocolate bar. My brother had $1 / 3$ of what was left. How much did this leave me?

On Friday, Florence read $\frac{3}{10}$ of her book.
On Saturday she read another $\frac{1}{5}$ of her book.
On Sunday she read another 90 pages and finished the book.

How many pages were in Florence's book?

End of KS2 assessment questions

This is a diagram of a vegetable garden.
It shows the fractions of the garden planted with potatoes and cabbages.

Not to scale

Lara had some money.
She spent $£ 1.25$ on a drink.
She spent $£ 1.60$ on a sandwich.
She has three-quarters of her money left.

How much money did Lara have to start with?
The remaining area is planted with carrots
What fraction of the garden is planted with carrots?

Supporting your child with fractions

- Videos on Seesaw
- Mymaths

